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The rich structure of
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Significant advances have been made in applying ideas from nonlinear dynamical
systems theory to flows which exhibit sequences of bifurcations in the transition to
turbulence. Moreover, the recent discoveries of finite-amplitude states in linearly stable
flows holds great promise for a breakthrough in our understanding transition in shear
flows. Tsukahara, Tillmark & Alfredsson (J. Fluid Mech., 2010, this issue, vol. 648,
pp. 5–33) study a novel variant of a classical shear flow by adding global rotation.
The competition between the induced body force and shear-induced instabilities leads
to the discovery of a rich and beautiful tapestry of transition sequences.

1. Introduction

The prospect of gaining insights into turbulent motion by studying the stability of
well-controlled specific flows has intrigued the fluid mechanics community for more
than a century since the pioneering investigations of Rayleigh, Reynolds and Kelvin.
Indeed Reynolds used this approach in his studies of pipe flow and anticipated that
turbulence would set in gradually as the flow rate was increased. However, he was
surprised to find that the onset of turbulence was abrupt and depended on the control
of his experiment.

All theoretical and numerical evidence suggests that pipe flow is linearly stable and
yet laboratory investigations demonstrate that turbulent flows are the norm even at
modest Reynolds numbers, Re. Another much studied example of a linearly stable
flow is in the plane Couette geometry where the fluid is driven by the differential
motion of the walls. This flow has been shown to be nonlinearly stable for all values
of Re by Romanov (1973). It is fair to say that the transition to turbulence in both
of the above problems remains largely mysterious despite a substantial amount of
research.

A significant step forwards has been made in recent years in the understanding of
such flows with the discovery of finite-amplitude states which can coexist with the
linearly stable trivial laminar flow. These new states are disconnected from the trivial
one and therefore cannot be reached with a continuous change in Re. However, they
can be achieved by either a discontinuous jump in the control parameter or they can
sometimes be reached by sequential continuous changes in more than one control
parameter. Examples of finite-amplitude states are provided by Nagata (1990) in
plane Couette flow, by Waleffe (2001) in channel flow, and in pipe flows by Faisst &
Eckhardt (2003) and Wedin & Kerswell (2004). An idea in view is that the turbulent
trajectories of the system decorate the fixed point structure of the finite-amplitude
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states and visit them with suitably weighted residence times as discussed by Willis &
Kerswell (2008). The discovery of these new states has brought fresh impetus and
stimulated new research into problems where the origins of turbulence have remained
unresolved since the studies of Reynolds and Couette.

A transition problem where considerable progress has been made is the flow
between concentric cylinders commonly called Taylor–Couette flow. A sequence of
bifurcations is found in the progression from laminar to disordered motion as Re is
increased and advances have been made by applying ideas from nonlinear dynamical
systems and bifurcation theory. The flow is known to have rich structure in both
the dynamical (Coles 1965) and static (Benjamin & Mullin 1982) solution set and
yet quantitative agreement between numerical calculations of the Navier–Stokes
equations and experiment can be achieved (e.g. Mullin, Cliffe & Pfister 1987).

Tsukahara, Tillmark & Alfredsson (2010) report the results of a systematic
experimental investigation into rotating Couette flow where both shear and body
force instabilities arise. They have uncovered seventeen different flow regimes and a
rich variety of transition scenarios. Multiple solutions and many routes to disordered
motion are common features of closed recirculating flows but here they interestingly
appear in an open flows where a single transition is most often assumed.

2. Overview

The experiments are performed in a carefully constructed water channel with walls
which are made to move in opposite directions. The walls are made from a seamless
transparent broad belt which is driven by a pair of cylinders and the entire apparatus
is mounted on a rotating table to provide plane Couette flow with global rotation.
Observations are made using flow visualization with anisotropic neutrally buoyant
flakes which align with the local shear. Striking images of the various flow regimes are
obtained and these are used to classify the various flow regimes in parameter space.
Image processing is also performed to extract quantitative two point information
from correlations of the light intensity which is used to provide estimates of the
wavelength of the roll structures in the flow field.

The control parameters for the experiment are the global rotation number Ω

and the Reynolds number Re. (Ω = 2Ωzh/ν and Re =Uwh/ν where Ωz is the applied
global rotation rate, 2h is the gap width between the walls, ν is the kinematic viscosity
and 2Uw is the velocity difference of the walls.) These define the axes of a control
parameter space and the protocols adopted mean that one-dimensional parameter
sweeps are taken through the space. Moreover, smooth changes in parameter are made
to circumvent possible multiplicity in the solution set with concomitant hysteresis.
These procedures enabled estimates to be made for the parameter range of existence
for the various flow states.

A prominent feature of the flows found for positive values of Ω is the striking
similarity with flows observed in Taylor–Couette flows between rotating cylinders.
Two of these flows have been highlighted in figure 1 where the simplest example
of steady cellular flow can be compared directly in figures 1(a) and 1(c). The
observed two-dimensional roll structures in the rotating plane Couette geometry
are in accord with linear stability analysis with close agreement between the predicted
and measured wavelengths. However, the subtlety of the boundary conditions in the
physical realizations of rotary and rotating plane Couette flow may require further
elucidation before a complete connection can be made.
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Figure 1. Taylor–Couette flows between concentric cylinders with aspect ratio Γ = 20, radius
ratio η =0.5. (a) Re ≈ 72.0 (b)Re ≈ 100. Rotating plane Couette flow with (c) Re = 178,
Ω = 24.6 and (d ) Re = 99.6, Ω =8.65. (c) and (d ) are from Tsukahara et al. (2010).

The simply periodic travelling wave state for Taylor–Couette flow (figure 1b) is
remarkably similar to the ‘steady’ three-dimensional cellular flow found in rotating
plane Couette flow (figure 1d ). The wave moves at ∼0.33 the surface speed of the inner
cylinder in Taylor–Couette flow and yet it is stationary in this new geometry. These
flows concur with numerical calculations by Nagata (1998) who correctly predicts
that they will be stable within a narrow parameter range.

Negative values of Ω stabilize the flow and the states comprise of localized regions
of turbulent flow within a laminar background. These include turbulent stripes of
the type first reported by Coles (1965) for counter-rotating cylinders and interesting
turbulent ‘spots’ are found in a narrow wedge of parameter space. They are born and
die at random locations and are visually reminiscent of Emmons spots (Emmons 1951)
in boundary layer transition. Localized turbulent patches have also been observed in
stationary plane Couette flow by Prigent & Dauchot (2005).

3. Future

Hydrodynamic stability and the transition to turbulence is a vibrant research field
where exciting theoretical developments such as the discovery of finite-amplitude
solutions of the Navier–Stokes equations have been matched by high-quality
observations of novel phenomena in classical flows. An example of this is provided by
the fascinating range of flows uncovered in this careful experimental study where the
apparently straightforward modification of adding rotation to a linearly stable shear
flow has uncovered a plethora of transition sequences. Many of these are normally
associated with internal recirculating flows where it might be assumed that they are
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special features of the geometry and hence have limited value in providing insight
into open flows such as boundary layers and pipes.

A distinct advantage of problems such as Rayleigh–Bénard convection and Taylor–
Couette flow is that precisely controlled experiments can be used to produce high-
quality data which can provide quantitative comparison with numerical data on
physical boundary conditions (e.g. Stevens et al. 2009). This aspect has enabled deep
insights to be obtained into the origins and properties of turbulence under a wide range
of parameters. Adopting a similar joint approach for open flows remains a formidable
challenge from both experimental and numerical standpoints. An interesting prospect
arising from the work of Tsukahara et al. (2010) is that it may be possible to form a
bridge between the apparently distinct classes of open and closed flows by numerical
and experimental parametric continuation.

An open and unresolved question is whether multiplicity found in experimental and
numerical investigations at small values of Re has relevance in turbulent flows, i.e. is
the turbulent state in any given geometry unique? An interesting set of observations is
provided by Monchaux et al. (2006) who find pairs of asymmetric states in a turbulent
von Kármán flow. Is the complexity uncovered by Tsukahara et al. (2010) perhaps a
generic feature of solutions of the Navier–Stokes equations?
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